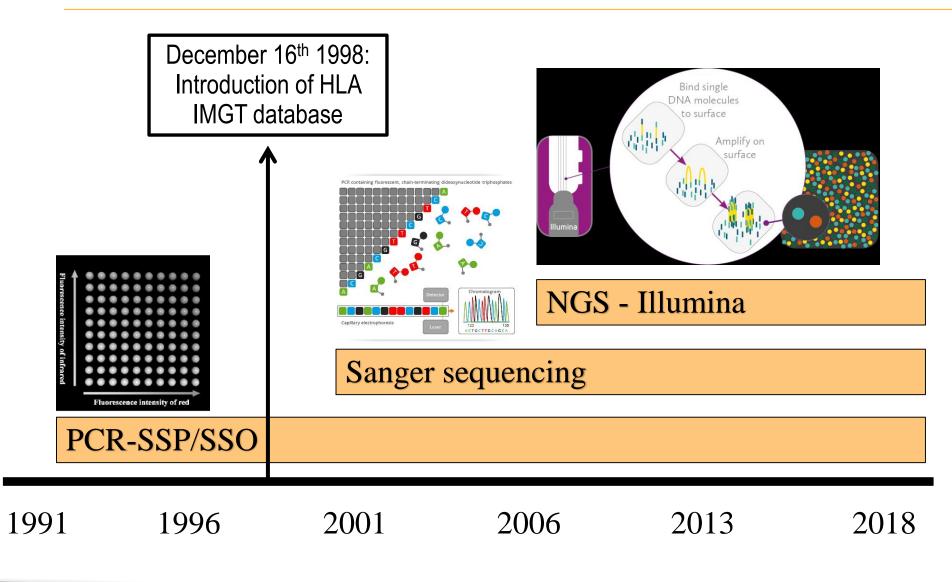
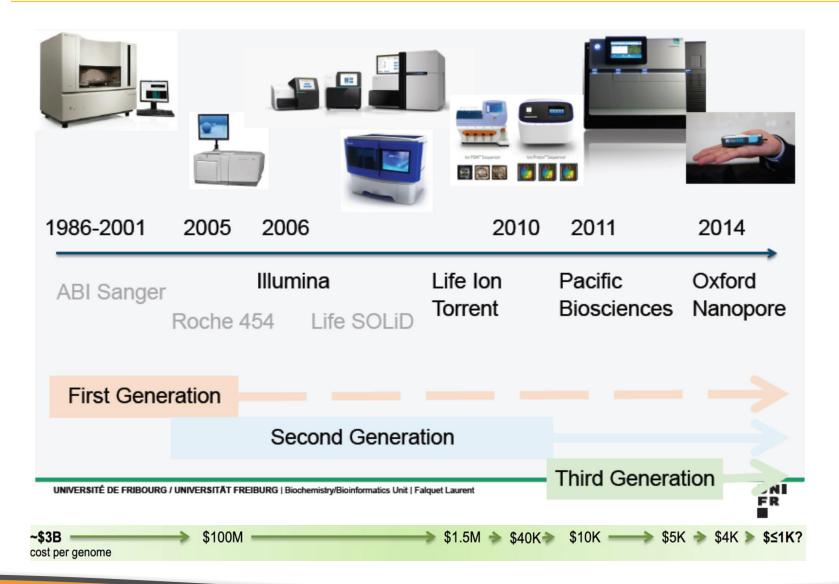


Analysis of High-Resolution HLA Typing by NGS: Which tools do we need?

Leipzig, 2019

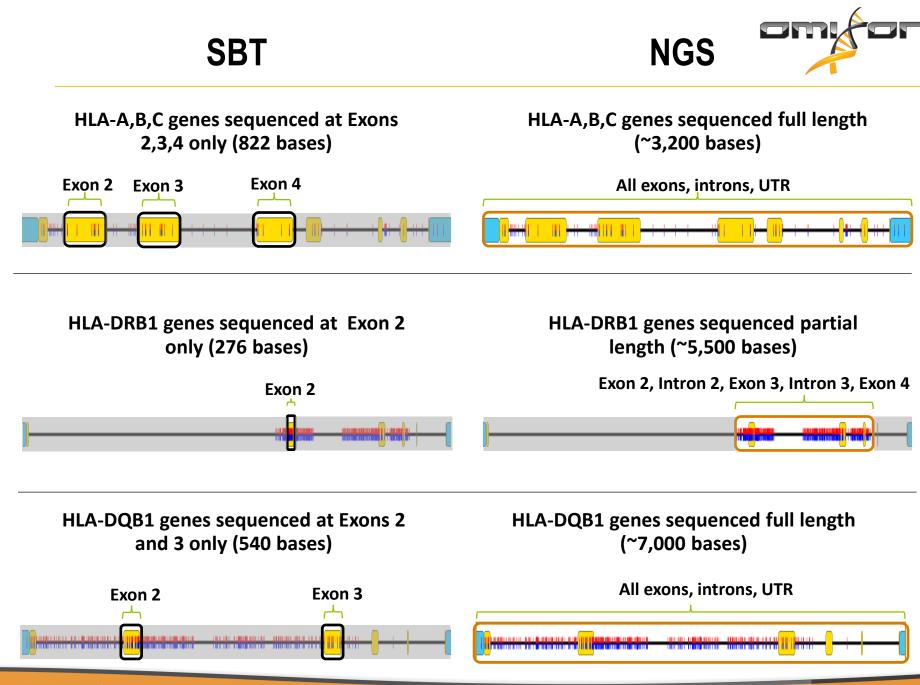

Nina Lauterbach, Senior Field Application Scientist

- Brief History
- SBT vs NGS
- Benefits and challenges of NGS
- Tools in the NGS analysis software HLA Twin
- Summary
- Product update Omnitype
- Questions

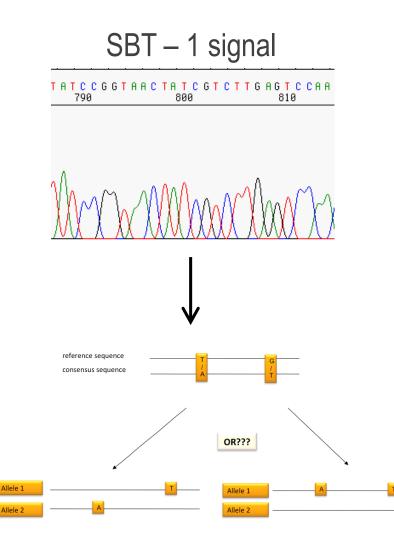

Evolution of molecular HLA typing methods

omi

Evolution of NGS platforms



What do we gain from NGS?


- 1. Full length gene sequencing
- 2. The ability to identify novel/ null alleles
- 3. Typing with (almost) zero ambiguities
- 4. Flexibility in sample number, from low- to high throughput
- 5. Possibility to automate pre- and post-PCR
- 6. Cost efficient possibility to combine different type of libraries

Courtesy of Curt Lind at CHOP

Benefit of phasing with NGS

NGS – 2 signals

	Allele	-	A	-	с 韋	т 韋	G	\$
Н	LA-C*P1:C1				135			1
H	LA-C*P1:C2				1			193

	1,210 1				,21	15 1,220						1,225						1,230						
	Phased region 1				Ph	Phased region 1 Ph						ased region 1					has		Ph					
	с	G						Т										G				С	G	
						:					1		:			1				1	:			
on 3	E	xon	3	Exe	on 3	E	xon	3	Exo	n 3	Ð	ion 3	3 1	Exor	13	Exe	on 3	E	ton	3	Exo	n 3	Ex	on 3
G	С	G	G	A	G	A	G	Т	С	т	A	С	C	т	G	G	Α	G	G	G	С	С	G	G
G	С	G	G	Α	G	Α	G	Т	С	т	A	С	С	т	G	G	Α	G	G	G	С	С	G	G
G	С	G	G	Α	G	Α	G	Т	С	т	Α	С	С	т	G	G	Α	G	G	G	С	С	G	G
G	С	G	G	A	G	A	G	Т	С	Τ.	A	С	C	Т.	G	G	Α	G	G	G	С	С	G	G
G	С	G	G	Α	G	Α	G	Т	С	Т	Α	С	С	Т	G	G	A	G	G	G	С	С	G	G
G	С	G	G	G	G	Α	G	Т	С	T	A	С	С	T	G	G	A	G	G	G	С	С	G	G
G	C	G	G	A.	G	A.	G	Τ.	C	.т.	. A	C	C	.т.	G	G	Α.	G	G	G	C	C	G	G
G	C	G	G	A	G	A	G	T	C	÷	A	C	C	÷	G	G	A.	G	G	G	C	C	G	G
G	C	G	G	A	G	Α	G	Т	C		Α					G	Δ	G	G	G	С	C	G	G
					-		-		-	-	~	×.	~	-	~	~	<u> </u>	~	-	~		-		~
									Ĩ	ċ		Ľ	Č	ċ	_		ĥ							Ŭ
	т	т						c		Ì		Ĭ		j			~	Т				A	c	
	Т	T						С										T				A	С	
on 3		T	3	Exc	on 3	E	xon		Exo	n 3		ion i	3	Exor	3	Exe	on 3		kon	3	Exo			
on 3 G			3 G	Exi	on 3 G	E	xon G			n 3 T		ion i	C	Exor	3 G	Exe	on 3		kon G	3 G	Exo			on 3 G
			3 G G	Exe	on 3 G G	EAAA	xon G			n 3 T	Б	ion i C C	C	Exor	G G	Exe G	on 3 A A		1	3 G G	Exo		Ex	on 3
G			3 G G G	Exe A A A	G G G G	E A A A	xon G G			n 3 T T	Б	on i C C	C C C	Exor T T T	3 G G	Exe G G G	on 3 A A A		G	G	Exo C C C		Ex C	on 3 G
G G			3 G G G G	Exc A A A A	G G G G G	E A A A A	xon G G G			n 3 T T T T	E A A	on i C C C C	C C C C C	TTTTT	G G G G G	Exe G G G G	on 3 A A A A		G G	G G	Exo C C C C		Ex C C	on 3 G G G
G G G G			G G G	Exe A A A A A	G G G	E A A A A A	G G G			n 3 T T T T T	E A A		C C C C C C C	Exor T T T T T	3 G G G G G G G	Exe G G G G G G G	A A A A A A		G G G G	G G G	Exo C C C C C C		Ex C C C C C C C C	on 3 G G G G
G G G G G		Exon T T T T T T	G G G G G	Exe A A A A A A A	G G G	E A A A A A A A	G G G G G	3 C C C C C C C C C C	Exo C C C C C C C	n 3 T T T T T T	E A A A A A A A	C C C C C C C C	C C C C C C C C C C C	T T T T T T	G G G G G	Exe G G G G G G G G	an 3 A A A A A A A A	E T T T T T	G G G G G	G G G G G	Exo C C C C C C C C		EX C C C C C C C C C C C C C C C C C C C	on 3 G G G G G
G G G G G G		Exon T T T T T T T	G G G G G G	Exe A A A A A A A A A	G G G	E A A A A A A A A	G G G				E A A A A A A A A A		C C C C C C C C C C C C C C C C C C C		3 G G G G G G G G G	Exe G G G G G G G G G G G G G G G G G G G	on 3 A A A A A A A A		G G G G G G	G G G G G G	Exo C C C C C C C C C C C C C C C C C C C		EX C C C C C C C C C C C C C C C C C C C	on 3 G G G G G G G G G G
G G G G G G G G		Exon T T T T T T	G G G G G	Exe A A A A A A A A A A	G G G G G G	E A A A A A A A A A A	G G G G G	3 C C C C C C C C C C	Exo C C C C C C C	n 3 T T T T T T T T	E A A A A A A A A A A A	C C C C C C C C	C C C C C C C C C C C C	T T T T T T T T	G G G G G	Exe G G G G G G G G G G G G G G G G G G G	an 3 A A A A A A A A A A	E T T T T T	G G G G G G G G	GGGGGGGG	Exo C C C C C C C C C C C C C C C C C C C		EX C C C C C C C C C C C C C C C C C C C	on 3 G G G G G G G G G G G
G G G G G G G		Exon T T T T T T T	G G G G G G	Exe A A A A A A A A A A A A	G G G G G G	E A A A A A A A A A A A A A	G G G G G	3 C C C C C C C C C C	Exo C C C C C C C	n 3 T T T T T T T T T	E A A A A A A A A A	C C C C C C C C	C C C C C C C C C C C C		G G G G G	Ex G G G G G G G G G G G G G G G G G G G	A A A A A A A A A A A A A A A A A A A	E T T T T T	G G G G G G	G G G G G G			EX C C C C C C C C C C C C C C C C C C C	on 3 G G G G G G G G G G

Challenge of HLA typing using NGS

- New definitions (phasing, coverage, Q30 score etc.)
- Complex algorithms
- Incomplete reference allele database
- Increasing allele database (35% increase from 3.33 to 3.38)
- Large and more complex dataset

NGS analysis software

The software is crucial in order to make sense of the huge amount of sequencing data

support@omixon.com

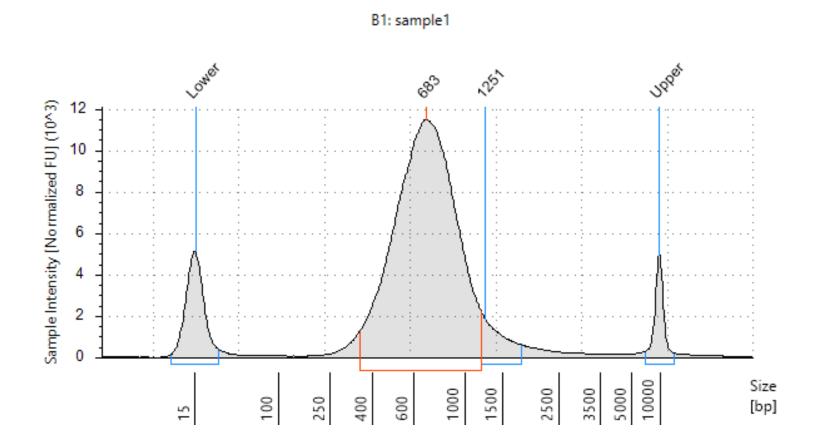
Illumina as primary platform

ABI 3730 Capillary sequencer Low volume, high labor

Roche 454 GS Junior Benchtop NGS Expensive per run

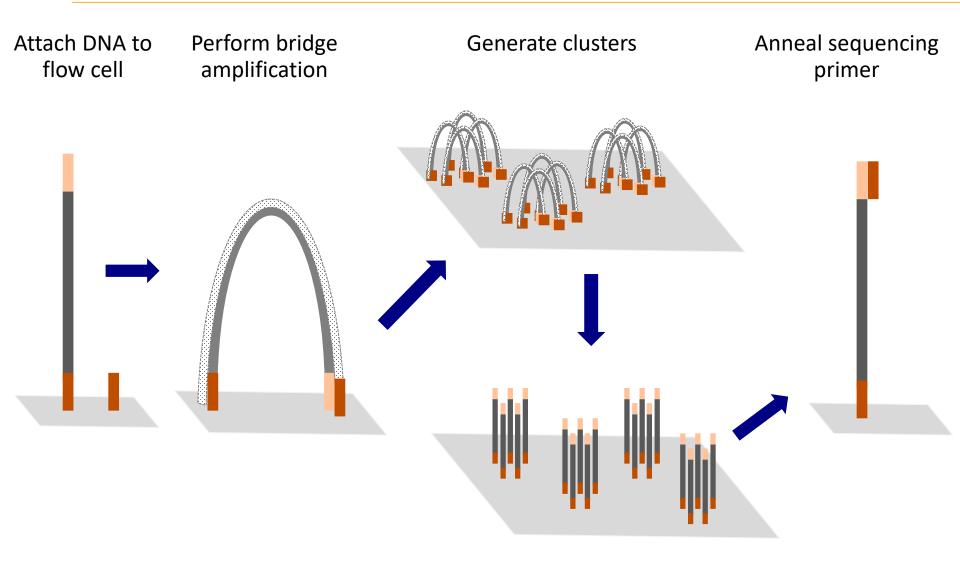
Genestudio S5 Benchtop NGS Semi-conductor sequencing Long sample prep Rapid run time

PacBio RS Non Benchtop (large) Fluorophore photocapture S M R T High raw error

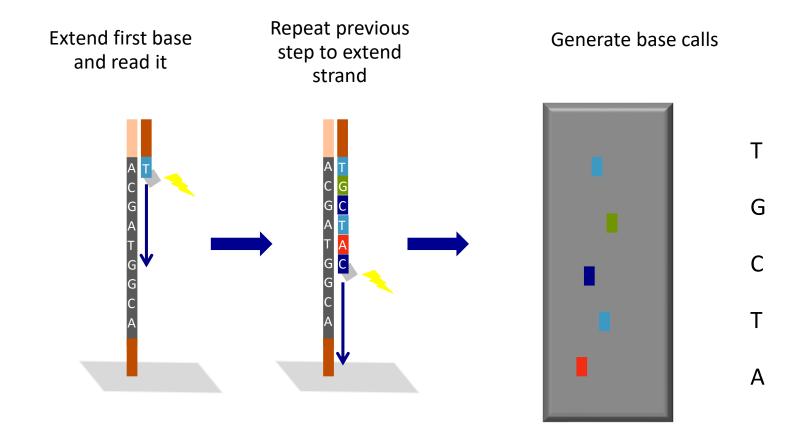


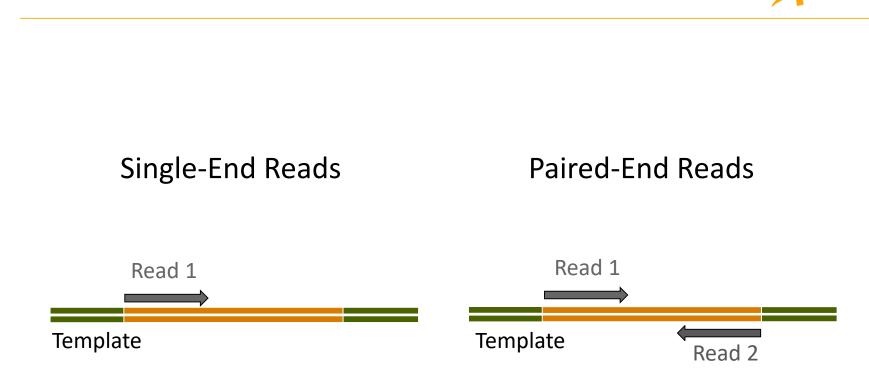
Illumina MiSeq Benchtop NGS Highly automated Quick sample prep Lowest error rate

Library contains various fragment sizes

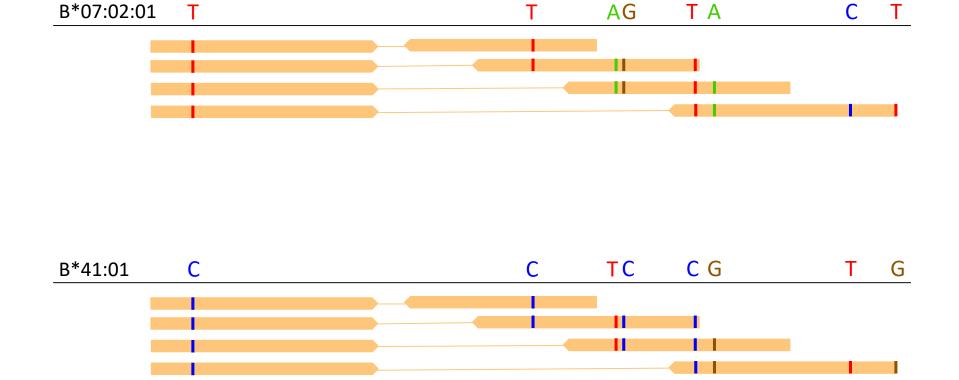


Fragment distribution after the bead-based size selection (500 – 1500 bp)

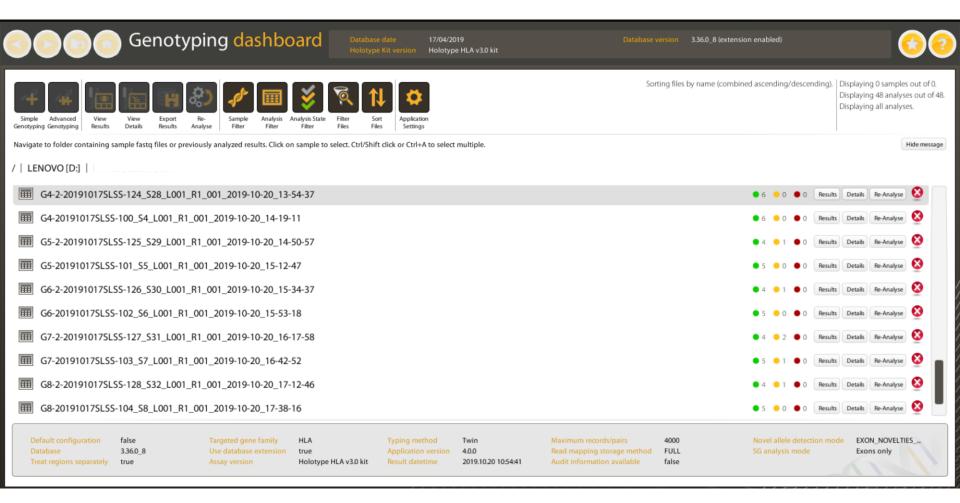

Illumina NGS Chemistry



Illumina NGS Chemistry



Sequence from the paired reads originate from the same template, and therefore are phased with each other


Long Distance Phasing

www.omixon.com

Analysis paired-end reads with HLA Twin

Omixon HLA Twin (Software)

- Preconfigured Holotype HLA-specific settings
- Automated genotyping after MiSeq run
- Up to two algorithms for determining HLA genotypes
 - Consensus Genotyping (Assembly)
 - Statistical Genotyping (Alignment to IMGT/HLA)
- Traffic light system for data interpretation and workflow management

Passed Info Inspect Investigate Failed

HLA Twin - The Traffic Light System



HLA-A*01:01:01:01

Fully concordant Concordant to 2nd field Concordant to 1st field

Discordant

All QC Metrics Passed

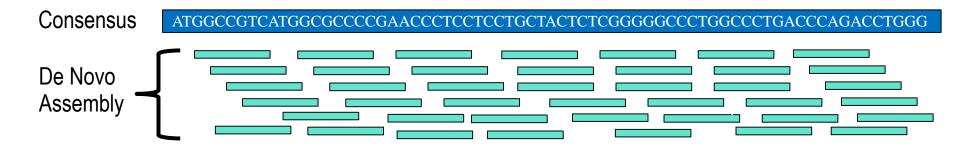
Passed with extra info

Inspect result

Investigate result

Failed. Rerun or reflexive test

- Two algorithms for determining HLA genotypes:
 - 1. Consensus Genotyping (Assembly)
 - 2. Statistical Genotyping (Alignment to IMGT/HLA)


Consensus Genotyping (Assembly) :

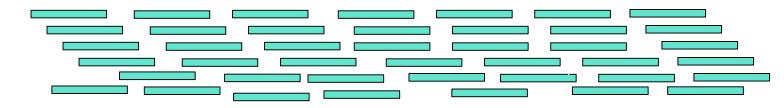
- 1. C- collect
- 2. C- construct
- 3. C- compare
- 4. C- check

HLA Twin - Consensus algorithm (1)

- 1. C- collect The HLA Twin will gather all sequencing reads from the Illumina sample file pair and will assign them to a specific locus.
- 1. C- Construct The processed reads per loci will be assembled (De Novo Assembly) to construct a long and continuous sequence called the consensus.

> During the process of De Novo Assembly, a filtering algorithm will detect reads with too low quality, which will be filtered out.

HLA Twin - Consensus algorithm (2)


3. C- Compare After completion, the consensus sequence will be compared to all the reference sequences of the alleles (of that specific loci) in the IMGT/HLA database to find a best match allele and to make an allele call.

4. C- Check - Upon the allele call the software will re-check itself (since it used only the consensus sequence to identify the best match): All the processed sequencing reads will be aligned to the reference sequence of the best matched allele (in this example HLA-A*01:01:01:01).

A*01:01:01:01 ATGGCCGTCA TGGCGCCCCG AACCCTCCTC CTGCTACTCT CGGGGGGCCCT GGCCCTGACC CAGACCTGGG

> Potential mismatches (novel sequences) between the reference sequence and sequencing reads will be detected and highlighted.

Statistical Genotyping : Alignment to IMGT/HLA

Works in a " if " scenery:

1. C- confirm

5 – Confirm: If the QC metrics are below a certain threshold (or a novelty is found), the software will try to **confirm the allele call** with the Statistical genotyping.

- The reads from the Illumina sample file pair will be directly aligned to all the alleles of the IMGT/HLA database.
- A complex calculation decides which allele has most reads aligned and therefore will be chosen as best match.

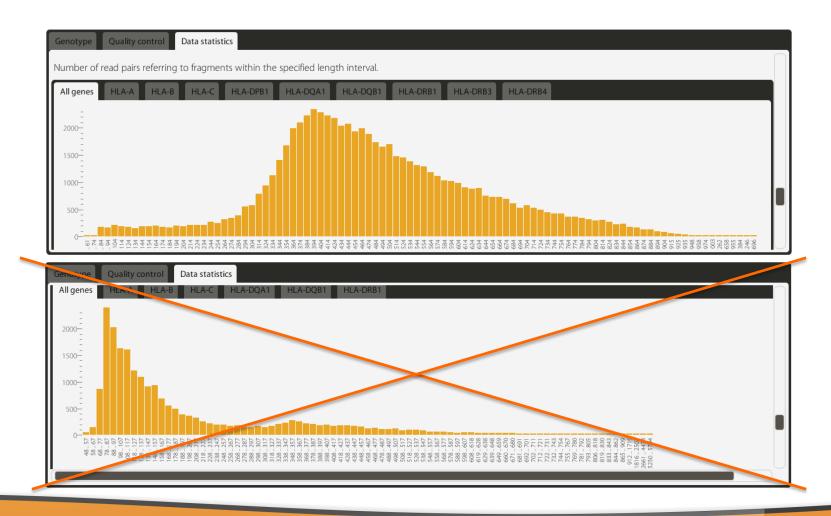
Tools to troubleshoot...

www.omixon.com

Quality Control Metrics system

 The 24 quality metrics will guide you towards the cause of a quality issue and help you decide whether or not you need to repeat the run.

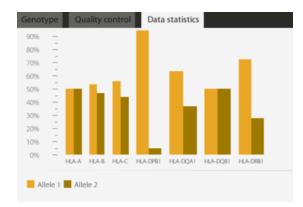
Allele 1	Browe Zeles 2 Genotype Show Details Show Show Novelbes Steles Steles Details Steles Deatails Steles Deatails Ste		pprove Rejuct/Revoke Approval			Displ	base version: 3.3 laying 5 loci out ng best matche:
	н	A-A	HLA-B	HLA-C		HLA-DQB1	
128695-2019101	SUPERATION STREET, ST		-B*15:01:01:06 -B*57:01:01 <mark>:01</mark>	HLA-C*01:02:01: HLA-C*06:02:01:		HLA-DQB1*03:03:02:01 HLA-DQB1*03:03:02:02	۲ 🌒
A-A	Genotype Quality control Data statistics						
	Measure	HLA-A	LI LI	A-B HLA-	C HLA-DC	QB1 HLA-DP	RB1
А-В	Measure	HLA-A					
A-B	Overall ()	INFO		IFO INFO			D
-C	Overall ①						D
-C	Overall © Primary QCs for Interpretation ©	INFO	1	IFO INFO	D PASSI	ED INFO	
-C -DQB1	Overall ① Primary QCs for Interpretation ① Read count ①	INFO 3844	■ 3424	(FO INFC	D PASSI 0 • 8193	ED INF(0
-C -DQB1	Overall ① Primary QCs for Interpretation ① Read count ① Noise ratio ①	• 3844 • 0%	 3424 0% 	IFO INFC ■ 3847 ● 0.26%	PASSI 8193 0%	ED INF(0 7635 0 0.05%	0
-C -DQB1	Overall Primary QCs for Interpretation Read count Noise ratio Key exon spot noise ratio	• 3844 • 0% • 0%	 3424 0% 0% 	IFO INFC ○ 3847 ○ 0.26% ○ 9%	 PASSI 8193 0% 0% 	ED INFC 0 7635 0 0.05% 0 0%	0 0
-C	Overall Primary QCs for Interpretation Read count Noise ratio Key exon spot noise ratio Consensus coverage key exon minimum depth	■ 1NFO ● 3844 ● 0% ● 0% ● 66		IFO INFC ○ 3847 ○ 0.26% ○ 0.9% ○ 0.47	PASSI ① 8193 ① 0% ① 0% ① 159	ED 105% 0.05% 0.05% 0.05% 0.41	
-C -DQB1	Overall ① Primary QCs for Interpretation ① Read count ① Noise ratio ② Key exon spot noise ratio ② Consensus coverage key exon minimum depth ③ Key exon allele imbalance ③	■ 3844 ● 0% ● 0% ● 66 ● 0.54 :0.46		 INFC INFC 3847 0.26% 0.26% 0.9% 47 0.54:0.46 	PASSI 0 8193 0 0% 0 0% 0 159 0 0.5:0.5	ED INFC 0 7635 0 0.05% 0 0.0% 0 41 0 0.54:0.46	
-C -DQB1	Overall Primary QCs for Interpretation Primary QCs for Interpretation Read count Noise ratio Key exon spot noise ratio Consensus coverage key exon minimum depth	■ 1NFO ● 3844 ● 0% ● 0% ● 66		IFO INFC ○ 3847 ○ 0.26% ○ 0.9% ○ 0.47	PASSI ① 8193 ① 0% ① 0% ① 159	ED 105% 0.05% 0.05% 0.05% 0.41	0 0 0
-C -DQB1	Overall Primary QCs for Interpretation Read count Noise ratio Key exon spot noise ratio Consensus coverage key exon minimum depth Key exon allele imbalance Genotype available	■ 3844 ● 0% ● 0% ● 66 ● 0.54 :0.46		 INFC INFC 3847 0.26% 0.26% 0.9% 47 0.54:0.46 	PASSI 0 8193 0 0% 0 0% 0 159 0 0.5:0.5	ED INFC 0 7635 0 0.05% 0 0.0% 0 41 0 0.54:0.46	
-C -DQB1	Overall ① Primary QCs for Interpretation ① Read count ① Noise ratio ② Consensus coverage key exon minimum depth ① Key exon allele imbalance ① Genotype available ② Secondary QCs for Interpretation ③	INFO		 INFC 3847 0.26% 0.9% 47 0.54:0.46 ○ Yes 	O PASSI ① 8193 ③ 0% ③ 0% ③ 159 ③ 0.5:0.5 ④ Yes	D 7635 ○ 0.05% ○ 0% ○ 0.41 ○ 0.54:0.46 ○ Yes	
-C -DQB1	Overall ① Primary QCs for Interpretation ① Read count ① Noise ratio ② Key exon spot noise ratio ① Consensus coverage key exon minimum depth ① Key exon allele imbalance ① Genotype available ② Secondary QCs for Interpretation ① Fragment size ③	■ 3844 ● 0% ● 0% ● 66 ● 0.54 :0.46		 INFC INFC 3847 0.26% 0.26% 0.9% 47 0.54:0.46 	PASSI 0 8193 0 0% 0 0% 0 159 0 0.5:0.5	ED INFC 0 7635 0 0.05% 0 0.0% 0 41 0 0.54:0.46	
-C -DQB1	Overall ① Primary OCs for Interpretation ① Read count ① Noise ratio ① Key exon spot noise ratio ① Consensus coverage key exon minimum depth ① Key exon allele imbalance ① Genotype available ① Secondary OCs for Interpretation ① Fragment size ② Read quality ①	■ 3844 ● 3844 ● 0% ● 66 ● 0.54 : 0.46 ● Yes ■ 437	 3424 906 906 906 906 906 9052:048 9 Yes 9435 	 INFC 3847 0.26% 0% 0% 47 0.54:0.46 Yes 426 	 PASSI 8193 0% 0% 0% 159 0.5:05 Yes 	ED 17635 0 0.05% 0 0.05% 0 0% 0 41 0 0.54:0.46 0 Yes	
-C -DQB1	Overall ① Primary QCs for Interpretation ① Read count ① Noise ratio ② Key exon spot noise ratio ① Consensus coverage key exon minimum depth ① Key exon allele imbalance ① Genotype available ② Secondary QCs for Interpretation ① Fragment size ③	 INFO 3844 0% 0% 66 0.54 : 0.46 Yes 	 3424 976 976 976 976 976 976 975 975	IFO INFC ■ 3847 ● 0.26% ● 0% ● 0% ● 0% ● 0% ● 0.54:0.46 ● Yes ① ● 426 ● 3629 	 PASSI 8193 0% 0% 0% 159 0.5:0.5 Yes 	ED INFC 0 7635 0 0.05% 0 0.05% 0 41 0 0.54:0.46 0 Yes 0 418 0 3.741	


Quality determined according to set thresholds

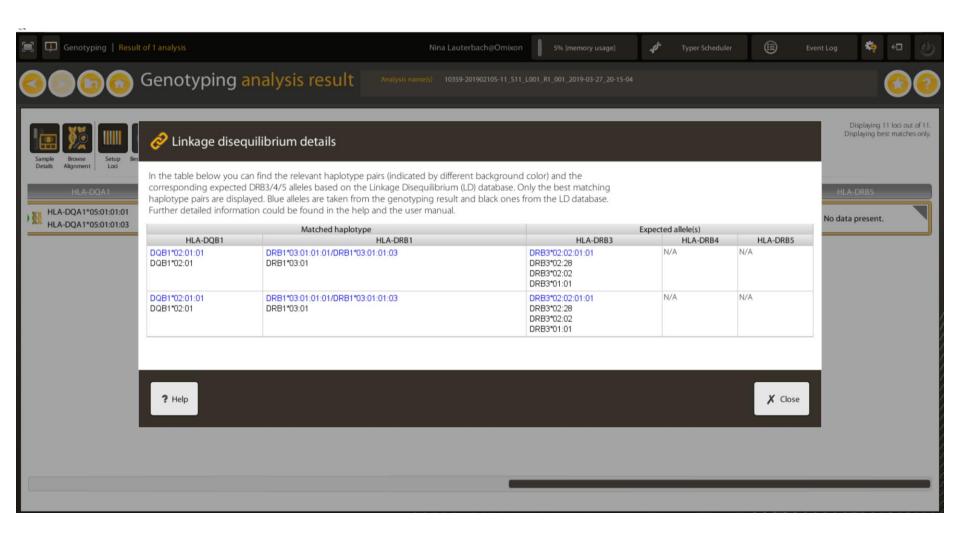
Measure	HLA-A		HLA-B		HLA-C		HLA-DQB	1	HLA-DRB	1
Overall (1)	INFO	INFO			INFO	PASSE)	INFO		
Primary QCs for Interpretation 🕖										
Read count 🕐	• 3844	0	• 3424	0	3847	0	8193	0	• 7635	0
Noise ratio 🛈	• 0%	0	• 0%	0	0.26%	0	• 0%	0	0.05%	C
Key exon spot noise ratio 🕖	• 0%	0	• 0%	0	• 0%	0	• 0%	0	• 0%	0
Consensus coverage key exon minimum depth 🕐	• 66	0	65	0	• 47	0	• 159	0	• 41	0
Key exon allele imbalance 🛈	• 0.54 : 0.46	0	0.52:0.48	0	PASSED criteria: ≥ 2	25		0	0.54 : 0.46	0
Genotype available	Yes	0	Yes	0	INFO criteria: 25 20			0	Yes	0
					INFO CITIENA: 25 2	.0				
Secondary QCs for Interpretation (1)					INSPECT criteria: 20	15				
Fragment size 🕐	• 437	0	• 435	0	INVESTIGATE criteria	. 15	10	0	• 418	0
Read quality 🛈	• 36.36	0	36.17	0	INVESTIGATE CITIENA	1. 13	10	0	37.41	C
Other exon spot noise ratio 🕖	• 0%	0	• 0%	0	FAILED criteria: ≤ 1	0		0	• 0%	C
PCR crossover artifact ratio 🕐	• 0%	0	• 0.38%	0	0.170	V	070	0	• 1.01%	C
Key exon mismatch count 🕖	• 0	0	• 0	0	• 0	0	• 0	0	• 0	0

DN

Recommended average fragment size of 400 bp

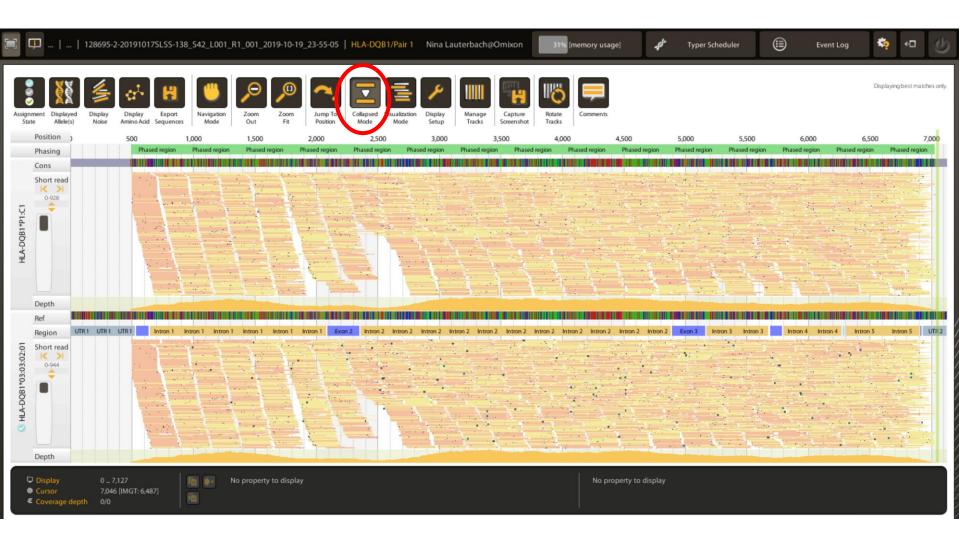

support@omixon.com

Allele imbalance?

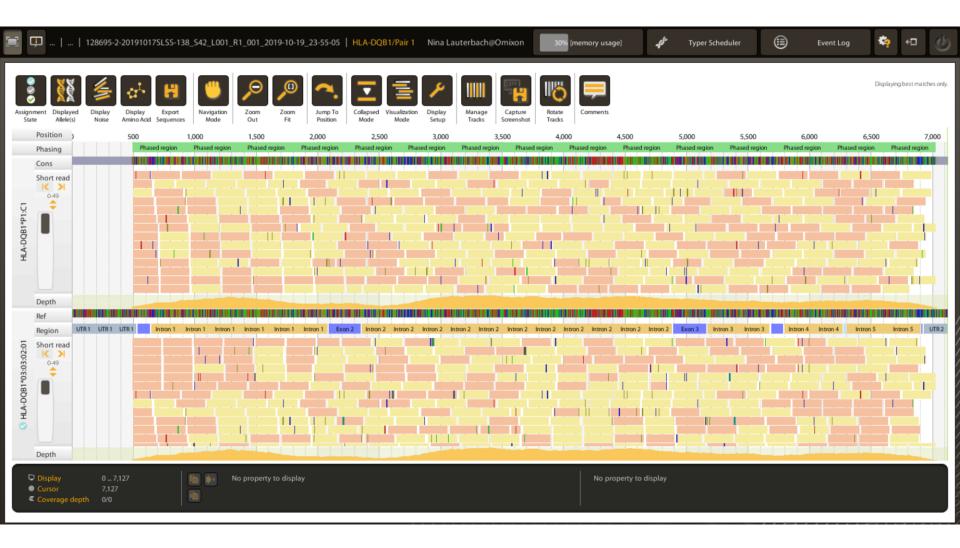

 The software can detect strong allelic imbalance > second allele below 1%

Measure	HLA-A		HLA-B		HLA-C		HLA-DPB1		HLA-DQB	1	HLA-DRB1	
Key exon mismatch count 🕐	• 0	0	• 0	0	• 0	0	• 0	0	• 0	0	• 0	0
Warnings for Troubleshooting 🕐												
Read length 🕐	• 144	0	• 142	0	• 141	0	• 145	0	• 144	0	• 144	0
Crossmapping (intergenic ambiguity) 🕖	• 10.73%	0	• 16.93%	0	• 18.8%	0	0.07%	0	0.02%	0	8.39%	0
Ambiguous layout (intragenic ambiguity) 🛈	• 3.99%	0	10.71%	0	13.17%	0	2.73%	0	• 1.35%	0	• 1.58%	0
Non-exon spot noise ratio 🛈	O%	0	• 7.98%	0	6.27%	0	• 7.45%	0	• 4.72%	0	0 22.31%	0
Continuous consensus 🛈	Yes	0	Yes	0	Yes	0	Yes	0	 Yes 	0	Yes	0
Fully phased consensus 🛛	Yes	0	Yes	0	Yes	0	No	0	• Yes	0	Yes	0
Consensus coverage other exon minimum depth 🕖	• 187	0	• 107	0	• 83	0	• 9	0	• 261	0	• 197	0
Consensus coverage non-exon minimum depth 🕖	• 157	0	64	0	66	0	- 0	0	• 30	0	• 26	0
Other exon allele imbalance 🛈	• 0.5 : 0.5	0	0.55:0.45	0	0.55:0.45	0	0.95 : 0.05	0	0.5:0.5	0	0.5:0.5	0
Non-exon allele imbalance 🕖	• 0.5 : 0.5	0	0.53:0.47	0	0.55:0.45	0	0.95 : 0.05	0	0.5:0.5	0	• 0.72:0.28	0
Other exon mismatch count 🕐	• 0	0	• 0	0	• 0	U		0	• 0	0	• 0	0
Non-exon mismatch count 🕐	• 0	0	• 0	0	• 0	0	• 0	0	• 0	0	• 0	0

support@omixon.com

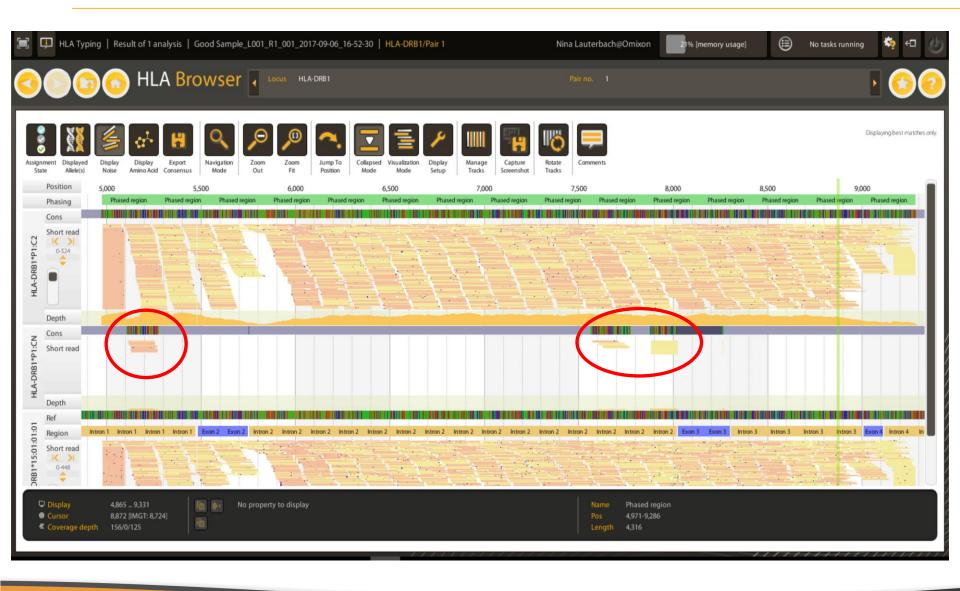

Use of Linkage Disequilibrium database

Check the coverage plot in the Gene Browser



Change the visualization mode

Zoom in on sequencing reads


Inspect sequences

Visualize noise reads in the noise track

www.omixon.com

support@omixon.com

How to be alerted on potential contamination?

0		🕞 Ger	notypin	g samı	ple result	Analysis name Application b			e_S1_L001_R1_2017-0 62ba3c26c12e05566fc0		Application version	on 2.1.4	i			@
Browse	Browse Allele 1 Brows		Show Alsmatches		Aatches Assignment State Precis				VRevoke proval Export Result	Turn LD on/off	Show D details				Display	se version: 3.28.0_4 ying 5 loci out of 7. best matches only.
				HLA-A		HLA-B			HLA-C			HLA-DQ	2B 1		HLA-DRB1	
_L001_R1_	_2017-08-15_10	•36-15	● 👯 🗣 HL/	A-A*02:245 A-A*03:01:01:0	1#1	HLA-B*07:33:0 HLA-B*59:04#1	1#1	• * *	HLA-C*01:23 HLA-C*08:04:03#1		● X ♣ H	LA-DQB1 LA-DQB1	*04:02:01:01 *06:146:01#1		HLA-DRB1*08: HLA-DRB1*15:	01:01
HLA-A		Genotype	Quality control	Data statis	tics											
HLA-B				Measur			HLA-A		HLA-B		HLA-C		HLA-DQE	1	HLA-DRB	1
HLA-C		Overall					FAILE	D	FAILED		FAILED		FAILED		FAILED	
HLA-DO	B1	Primary QCs	for Interpretatio	n 🕐												
HLA-DR		Read count (1)					3286	0	3275	0	3352	0	6861	0	6764	0
HLA-DK	ы	Noise ratio 🕐					9 13.06%	0	15.42%	0	7.82%	0	• 29.14%	0	• 29.97%	0
		Key exon spot r					• 26.97%	0	30.84%	0	• 20%	0	• 28.22%	0	38.49%	0
		Consensus cove	erage key exon mi	inimum depth (D		• 0	0	• 0	0	• 3	0	• 5	0	• 26	0
		Genotype avail	able @				 Yes 	0	• Yes	0	 Yes 	0	• Yes	0	 Yes 	0
								Ű								
		Secondary Q	Cs for Interpreta	tion 🛈												
		Fragment size (0				319	0	308	0	• 317	0	• 309	0	307	0
		Read quality 🕐					35.24	0	35.03	0	35.2	0		0	36.48	0
		Other exon spo	ot noise ratio 🕧				19.77%	0	14.46%	0	0%	0	• 32.97%	0	• 22%	0

Check the noise track...

www.omixon.com

support@omixon.com

HLA Twin Novel allele confirmation

• You can confirm a novel sequence in the Gene Browser

	HLA Ty													-14_1	11-00	20	HLA	A/Pai	r 1					ł		auterb r no.		Omixor	•	17% [memory	usage]			No t	asks run	ning	*?	⊕ ⊕	2
9)	0) H		DI		vse			icus	HLA-	^		_							_		_		r no.											ľ	0	90	2
Assignm State			isplay Noise	Displa Amino A	cid Cor	ixport nsensus	Na	wigation Mode	Z	oom Dut	Zoon		Jump Positi	To	Collag		/isualiza Mode		Display Setup		nage acks	Capt		Rotat		Comment	5										Displ	iying bes	t matches only.	l
	Position			1,115					1,120					1.5	,125					1,130	-				1,13					1,140				1,1					150	
	Phasing 1	1	Phased #	egion 1	Pha	sed regio	n 1	Phase	d region	1	Phased r	region	1 6	Phased	region	1	Phased	region	P	hased re	gion 1	Phar	sed regio	n 1	Phased	d region 1	Ph	ased reg	ion 1	Phased	region 1	Phase	ed region	1 Pf	ased regio	nt I	Phased regi	on 1	Phased regi	
	Cons														1																									
HLA-A*P1:C2	Short read	A A A A	T T T T	C C C C C C C	G G G G	C C C C C	C C C C C	с с с с с с с	T T T T	G G G G G	A A A A				T T T T T	A A A A	6 6 6 6 6	B	ase	sta	tisti	cs																		
HLA-A'		A A A A A	T T T T	C C C C C C C C C	G G G G	с с с с с с с	0000	0000	T T T T	G G G G G	A A A A	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA			T T T T T	A A A A	GGGGG	Nu	ımbe	er of r	eads			ng e	ach b	oase a	at po			for a	ll shor		d tracl		ilable.					
	Depth	A	1	C	G	c	c	c	- T	G	•	^			T	^	G					A	llele					Α	C		Т	G		1	NSERT				DELETE	
	Novel ref														т				A-A*P												68									
	Rel ref														G		5	HL	A-A*6	6:03#	1										82									
	Region	Exon	3 Exon	3 Exon	3 Exo	n 3 Exc	on 3 f	Exon 3	Exon 3	Exon 3	Exon 3	3 Exc	an 3 Ea	con 3	Exon 3	Exon	3 Ex																							
	Short read	A	т	С	G	С	С	С	т	G	A	A		:	т	A	G	_	_		_	_	_	_														_		
-A*66:03	K) 0-49	A	T.	C C	G	C C	C C	C C	T	G	A	A	0	-	T	A	G																							
HLA-A	\$	A	Ţ	C	G	C	C	C	Ţ	G	A	A			T	A	GG																						_ √	10
Ŧ		Â	÷	c	G	c	c	c	÷	G	Â	A			Ť.	Â	G																							
		A	T	C C	G	C C	C C	C C	T	G	A	A	0		T	A	G																		_					
	Depth	A	T	С	G	G	С	С	T	G	A	A		:	т	A	G	G	A	C	C	Ť	G	c	G	C	Ť	C	Ť	Ť	G	G	A (c c	G	С	G	G	C G	1
۲	Display Cursor Coverage d	lepth		1,152 (IMGT: I				\$ 1	No pr	roperty	/ to dis	play													14	No	propert	y to dis	play											100000

HLA Twin Novel allele confirmation

• You can confirm a novel sequence in the Gene Browser

ĵ	Ţ	HLA T	ſypin	g A	lesul	of 1	anal	ysis	No	ovel	null a	llele	_LOC	1_R1	_001	_201	7-08	-14_	1-00	-20	H	LA-A	/Pair	1							Nina I	auter.	bach	@On	nixon		269	6 (men	nory u	isage]		(€	No	tasks	runnin	ng	*	¢	Ś
3			0	0		HI	LA	В	ro	w	se	r	•	Locu	+	ILA-A	0														Pa	ir no.	1														Þ	6		2
Assigni Stat		Display Allele	yed (s)	Display		Display mino Ad		Export			igation ode		Zoom	1	Zoom Fit		Jump Positi	To	Colla	psed sde	Visua	alizatio		Pisplay Setup		Manage Tracks		Captu	re	Rotat		Comme	nts														Displa	ying be	st matche:	i oni
	Posi	tion	_			15						1,120						1,1							1,130						1,135						,140					1,1						1,150		ſ
	Pha		1	Phased	d region	1	Phas	ed regi	ion 1	P	hased	regior	1	Phas	ed regi	on 1	PI	hased r	region	1) STOP	Phase	ed reg	ion 1	Ph	lased n	egion 1		Phased	region	1	Phased	region 1		Phased	region	1	Phased	l region	1	Phased	region	1	Phase	ed regk	on 1	Phase	ed regior	1	Phased r	l
	Ami	noacid																		ator	1.):																													í.
HLA-A*P1:C2	Sho	rt read	A A A A A A A A A A A				G G G G G G G G G G G G G G G G G G G	C C C C C C C C C C C C C C C C C C C	000000000000000000000000000000000000000		C C C C C C C C C C				A A A A A A A A A	A A A A A A A A A A A	000000000			A A A A A A A A A A A A A A A A A A A	G G G G G G G G G G		G G G G G G G G G	A A A A A A G A	C C C C C C C C C C C	000000000		T T T T T T T T	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	C C C C C C C C C C C C C C C C C C C	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	C C C C C C C C C C					T T T T T T T T	G G G G G G G G	6 6 6 6 6 6 6 6 6 6	A A A A A A A A	0000000000000			G G G G G G G G G G	C C C C C C C C C C C C C C C C C C C	6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	C C C C C C C C C C C	6 6 6 6 6 6 6 6 6 6	
	Dep																/	-																																
		ted a el ref														(Glu)																										
-A*66:03#1	Regi	ion	on 3	Exon 3	Exo	13 E	ion 3	Exon	3 Exc	on 3	Exon	3 Ex	on 3	Exon 3	Exo	n 3 E	xon 3	Exon	3 6	ion 3	Exon	3 E	xon 3	Exon	3 Exc	on 3 Es	xon 3	Exon	3 Ext	on 3 E	xon 3	Exon 3	Exon	3 Ex	on 3 8	xon 3	Exon 3	Exor	n 3 Ex	ion 3 E	Exon 3	Exon	B Exe	on 3	Exon 3	Exon 2	B Exon		m 3 Exo	l
ALA-A*6	K	rt read	~ ~ ~ ~ ~ ~ ~ ~	TTT			G G G G G G G G G G		0000000						A A A A A A	A A A A A A A A A A A A A A A A A A A	000000	1		A A A A A A A A A	6 6 6 6 6 6		G G G G G G G	A G A A A A	0000000				GGGGGGG				TTTT					6 6 6 6 6 6 6 6		A A A A A A A				G G G G G G G G G G G G G G G G G G G	C C C C C C C C		6 6 6 6 6 6 6	0000000	6 6 6 6 6 6 6 6 6	
	Disp Cur		1,112 1,152	2 1,15 !	52							No	prope	erty to	displ	ay																	ad na gar appin		M03/ 250N 1		00000	0000-7	AML5C	21:110	1:1504	5:1512	7 2:N	:0:1						

- 1. NGS provides us with a large amount of data
 - High resolution typings
 - Complete missing sequences in IMGT database
 - Few to no ambiguities
 - Few to no reflex testing
- 2. NGS analysis software is a crucial part in obtaining trustworthy typings. Therefore HLA Twin provides:
 - Confidence in typing due to strong algorithms
 - Quality Control metric to alert user for potential issues
 - Tools for troubleshooting

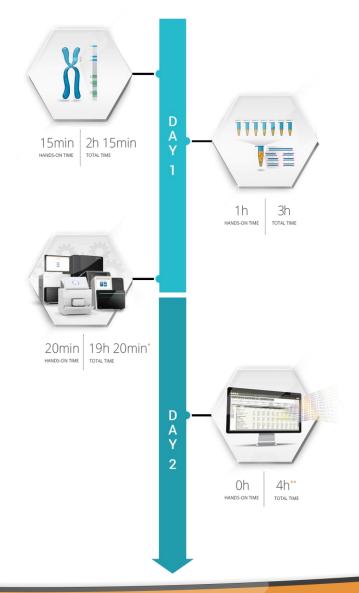
Important to give a functional meaning to the high resolution data

- 1. Improve the PIRCHE export function in the software make it bidirectional
- 2. Incorporate HLAMatchmaker algorithm

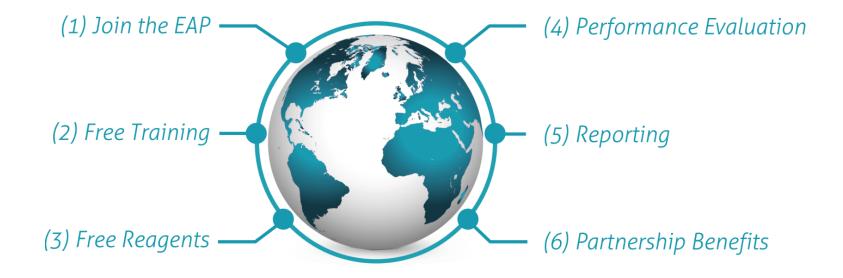
We are constantly learning and improving

What's new?

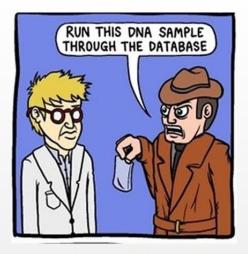
New Product: OmniType


- 11-locus, 1 tube multiplex assay for HLA typing
- Single workday workflow
- Fast PCR
- Efficient and technician-friendly library preparation protocol
- Minimal hands-on time
- Automatable protocol for pre- & post-PCR

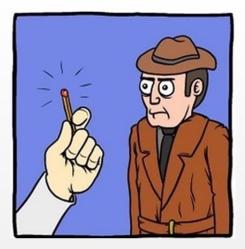
OmniType Workflow



- DNA to library in <7 hours
- ~1 hour hands-on time
- 100 ng total input DNA
- 11 loci, 1 tube
- Fast LR-PCR, ~2 hours
- No amplicon pooling
- Fast library preparation workflow
- Sequence results on Day 2



OmniType Early Access Program (EAP)



- Up to 48 samples FOC
- Up to 96 at special discount for validation
- Free onsite training with an Omixon FAS
- Ability to influence assay & software product development
- Join the EAP now!

Nina Lauterbach, PhD Senior Field Application Scientist Nina.lauterbach@omixon.com Richard Pallin VP Commercial Operations Richard.Pallin@omixon.com

www.omixon.com